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Targets of the research

The research consists of two fields: global optimization with expensive and noisy objective functions, and the Infinity Computing – a methodology allowing one to work numerically with infinities and infinitesimals.

A particular attention is dedicated to application of the Infinity Computer for solving ill-conditioned optimization problems. The research is oriented to solving real-life problems including the following important

industrial applications: solution to expensive and ill-conditioned optimization problems in image processing and noisy data fitting; stable and precise solution to ODEs; exact higher order numerical differentiation.

Expensive Global Optimization

Applications in noisy data fitting
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Error−function using Gauss−type RBF
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A nonlinear interpolation problem using Radial Basis Functions:

RMSE =

√

√

√

√

1

s

s
∑

i=1

|f (xi) − Iε(xi)|2 → min
ε∈Ω

, Ω ⊂ R
N,

f (xi), 1 ≤ i ≤ s, – noisy real-valued observations, Rε(r) – RBF,

Iε(x) =
∑m

k=1 ckRε(||x − xk ||2), and ε – the shape parameter.

Small ε → extremely ill-conditioned systems → large error.

Main optimization framework
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Nature-Inspired metaheuristics

Deterministic methods

Global minimum

Local minimum

A challenging problem: given a limited computational budget, it is

required to find a good approximation of the global minimum to a

multiparametric and multimodal costly objective function subject to

nonlinear constraints.

A promising approach: extension of univariate methods to the mul-

tivariable case by means of diagonal space-filling curves ([1, 2]).

Metaheuristic vs Deterministic methods

Metaheuristics (as firefly or other nature-inspired algorithms) are of-

ten used to study expensive black-box optimization problems.
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Firefly vs. deterministic methods:
100 5−dimensional expensive test problems
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The proposed deterministic methods (e.g., based on adaptive di-

agonal curves, ADC) demonstrate a much better performance with

respect to widely used deterministic (e.g., DIRECT) and metaheuris-

tic (e.g., firefly algorithm, FA) methods using the Operational Zones

and Aggregated Operational Zones approaches for their comparison

(see [1]).

Infinity Computing

Grossone (①)

Grossone – number of elements of the set of natural numbers. The

non-contradiction of the methodology has been proven in [3].

The Infinity Computer executes numerically operations with finite,

infinite and infinitesimal numbers in a unique framework using ①.

An analogy: amazonian Pirahã tribe can count only 1, 2, many :

many + 1 = many + 2 = many + many = many .

Traditional views on infinity:

∞ + 1 = ∞ + 2 = ∞ + ∞ = ∞

Infinity Computing (see [4] and the patents [5] for details):

0 · ① = ① − ① = 0① = 0,
①

①
= ①

0 = 1① = 1,
①

1.5

①
2.7

= ①
−1.2.

Using ① to stars... and beyond

Today: using ∞ Tomorrow: using ①

Numerical differentiation

Calculate derivatives at the point x = 3 of the function f :

f (x) =
x + 1

x − 1
.

The Infinity Computer executes numerically the operations

f (3 + ①
−1) = (3①

0 + ①
−1 + 1①

0)/(3①
0 + ①

−1 − 1①
0) =

= 2①
0 − 0.5①

−1 + 0.25①
−2 − 0.125①

−3 + 0.0625①
−4 − ...

From this numeral, we obtain (see [6])

f (3) = 2, f ′(3) = −0.5, f ′′(3) = 2! · 0.25 = 0.5,

f (3)(3) = 3! · (−0.125) = 0.75,

being exact values of f (x) and the derivatives at x = 3.

Numerical differentiation: ODEs

y ′(t) =
y − 2ty2

1 + t
, y(0) = y0 = 0.4,

Let us find y ′′(0) using Euler’s method with the step h = ①
−1 and

the forward differences (see [7, 8] for details):

y1 = 0.4 + ①
−1f (0, 0.4) = 0.4 + 0.4①

−1,

y2 = y1 + ①
−1f (①−1, y1) = 0.4 + 0.8①

−1 − 0.32①
−2 − 0.32①

−3,

y ′′(0) ≈
△2

①−1

①
−2

=
y0 − 2y1 + y2

①
−2

=
−0.32①

−2 − 0.32①
−3

①
−2

=

= −0.32 − 0.32①
−1 = y ′′(0) + O(①−1).

The obtained error is infinitesimal!

Hamiltonian problems

An illustrative application: Fermi-Pasta-Ulam problem (FPU

problem, see [9] for more applications, e.g., Kepler problem).

H(q, p) =
1

2

m
∑

i=1

(p2
2i−1+p2

2i)+
ω2

4

m
∑

i=1

(q2i−q2i−1)
2+

m
∑

i=0

(q2i+1−q2i)
4

q0 = q2m+1 = 0, pi = q̇i, i = 1, . . . , 2m, and ω = const . The total

energy I = I1 + ... + Im of the linear springs is almost conserved,

where Ii =
1
4

(

(p2i − p2i−1)
2 + ω2(q2i + q2i−1)

)

.

FPU problem: energy

Solved by the Euler-Maclaurin methods using ① with m = 3.

Infinity Computing in Optimization

Traditional computers: ill-conditioning

Underflows/overflows in traditional systems → wrong solutions:
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Graph of the original function f (x) from [10]
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Graph of the scaled function g(x) = 10−16f (x) + 1.

Infinity Computer: well-conditioning

Infinite and infinitesimal scaling → correct solutions:
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h* = 

Method: Trials:

Geom−AL 465

Inf−GL 136

Geom−LTMA 39

①

Results of three proposed algorithms on the scaled function

g(x) = ①
−1f (x) + ① from [10, 11].

Constrained optimization: exact penalty

min
x

1

2
x2

1 +
1

6
x2

2

subject to x1 + x2 = 1

Penalty approach:

min
x

1

2
x2

1 +
1

6
x2

2 +
P

2
(1 − x1 − x2)

2.

Traditional computers – iterative procedures with different P can

return approximated solutions only.

Infinity Computer – exact penalty P = ① (see [12]):

x∗
1 =

1

4
−①

−1(
1

16
−

1

64
①

−1+ . . .), x∗
2 =

3

4
−①

−1(
3

16
−

3

64
①

−1+ . . .)

The finite parts of x∗
1 and x∗

2 give us the exact solution to the

original constrained problem: x = (1
4
, 3

4
)

Obtained results
New powerful multivariable optimization schemes have been proposed: global optimization algorithms based on adaptive diagonal curves ([1, 2, 15, 16]), acceleration techniques in derivative-free and smooth

global optimization ([11, 13]), ①-based penalty functions in constrained optimization ([12]), where a new generator of test problems with non-linear constraints based on the GKLS-generator for testing algorithms of

constrained global optimization has been introduced. New simple and powerful higher order numerical methods for solving ordinary differential equations have been proposed using the Infinity Computing framework

([7–9]). The Infinity Computer has been applied to handling ill-conditioning in optimization ([10, 14]). Presented techniques can be used in different fields, where ill-conditioning appears.
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